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Abstraet. The vibrational density of states (COS) of very large percolating cluskrs (bond and 
site). is calculated in three dimensions using the spectral momen6 method. It is confirmed that 
for site (bond) percolation, the slope of the ws i n  the fracton regime is strongly dependent on 
the occupation pmbability p and the panicle interactions. For the bond percolation, the MS 
presents a more complex behaviour in the low-frequency region than the &bye law observed in 
the site percolation. Interactions are represented by the Bom Hamiltonian with first and second 
nearest neighbours. Several models are S N W  for each model, it is possible to define critical 
exponents. A comparison with experimental resulu on silica aerogels is reponed. 

1. Introduction 

In the last few years, there has been a growing interest in the dynamical properties of 
fractal structures: theoretical analysis (Alexander and Orbach 1982, Alexander 1983, 1986, 
1989). computer simulation (Angles d'Auriac et al 1983, Demda et al 1984, Yakubo and 
Yakayama 1987, 1989, Qiming Li er al 1990, Roman 1990, Roman et al 1991 and Royer 
eta1 1992a,b), and experiments (Courtens er af 1987, 1988, Vacher et al 1988, 1990, and 
Reichenauer er a1 1989). These investigations provide a scaling of the vibrational density of 
states with a power (d - 1) of the frequency above a phonon to fracton crossover frequency 
0,; d is the spectral dimension and characterizes the connectivity of a system. The crossover 
frequency is supposed to separate phonons at lower frequencies from localized vibrations 
(fractons) at high frequencies (Alexander and Orbach 1982). 

Fractons were first introduced by studying percolation systems with scalar (isotropic) 
elastic forces model, where the fracron dimensionality d = 413, was conjectured to hold 
in d dimensions for d 2 2 (Alexander and Orbach 1982). Yakubo and Yakayama (1987, 
1989) using a resonance technique verified this conjecture ford = 2 and d = 3. However, 
the case d = 2 seems to be particular with d 2 0.31 (Aharony et al 1985 and Royer er al 
1992a. b). In this model, the potential is the Born Hamiltonian (Born and Huang 1956, Feng 
and Sen 1984). It was shown that this potential fails to take into account the vector nature 
of the most realistic elastic systems, and that percolating networks can have very different 
critical exponents from those of a scalar model. notably the elastic modulus exponent (Feng 
et al 1984, Bergman 1985). In this paper, we consider the following potential 

U = ;  Ckij{(U(ui--j)~tS(ui-uj):J+~ k i j ( y ( u i - u j ) * j  ( 1 )  
i.1 i .  j 
(NN) w"NN 

where NN denotes that the summation is performed over the first nearest-neighbouring pairs 
( i ,  j )  and NNN over the next-nearest-neighbouring pairs (f, j ) ,  (ui - u,)ll is the relative 

794 I 0953-8984/93/437941+14$07.50 @ 1993 IOP Publishing Ltd 



7942 A Rahmani et a1 

displacement in the direction of the bond (i. j )  and (U; - U,)L is the relative displacement 
in the perpendicular direction. For random site (bond) percolation, k;j is a random variable 
which takes the value 1 if the sites i and j are both (bond ( i .  j ) )  occupied, and 0 otherwise. 
a, 8 and y are the elastic interaction strength parameters. 

When y = 0, by changing the parameters (Y and 6 ,  two extreme cases can be noted 
(Feng and Sen 1984): for a = 8 ,  the purely isotropic model introduced above, which was 
associated by de Gennes to conductivity problem (de Gennes 1976); for the central force 
model, i.e. 8 = 0, the Hamiltonian (1) represents a random network of springs and the 
problem is intrinsically of vector nature (Feng and Sen 1984). 

Feng and Sen (1984) showed by numerical study of bulk and shear moduli of 3D face- 
centred cubic (FE) and 2D triangular lattices, that the central force elastic percolation 
problem belongs to a different universality class from conduction problems. In the 
case of simple hypercubic percolating networks, both numerical study (Feng et a1 1984. 
Bergman 1985) and effective medium approximation (EMA) (Feng et a1 1985) predicted 
that the elastic threshold pe  = 1 for the central model. 

To extend the study with vector elastic forces to such lattices, Kantor and 
Webman (1984) and Feng (Feng and Sahimi 1985, Feng 1985a) considered the bond- 
bending force model, which has been used extensively to describe elastic and vibrational 
properties of molecular (Kirkwood 1939) and solid state systems (Keating 1966, de Leeuw 
et a1 1985 and Wooten and Weaire 1987) and those of disordered tenuous structures (Feng 
et a1 1984, Webman and Grest 1985). These studies showed that a crossover length scale 
I ,  exists, such that for a quasi-one-dimensional chain, when the correlation length t < I ,  
(6 - Ip - pel-", where the critical exponent U is a positive constant), the fracton properties 
of the system are govemed by the bond-stretching motion, which scales in the same way 
as the scalar model (2 = 4/3); whereas when 6 > I , ,  the bond-bending motion (which has 
a different scaling behaviour) becomes dominant, and there is a crossover from effective 
spectral dimension d = 0.8 to 2 = 3/3 as the wavelength decreases from the A > I ,  
regime to the A < 1, one (Feng 1985a). The calculation of the Young’s modulus Y and the 
conductivity C showed an elastic modulus exponent f :  Y N Ip  - p J f ,  greater than the 
conductivity exponent f : C - Ip - pel‘. 

By experimental probes, Vacher er a1 (1990) identified three crossovers and two distinct 
regions in the fracton regime of the Dos of silica aerogels. These contributions were 
associated to bend- and stretch-dominated elasticities. Further, the values of the spectral 
dimensions appear to be non-universal. 

2. Models and DOS calculations 

In this work, using a numerical technique, we direct our interest to elastic properties of 
the site and bond 3D cubic percolating networks. In all the systems below, we assume that 
atoms of mass m = 1 are placed at the sites of the lattice and the parameter (Y = 0.125. 
Each system consists of a single, very large cluster: the infinite cluster. 

We use the spectral moments method, which could provide the exact response function of 
very large harmonic systems, whatever the structure, the type of the forces and the dimension 
(Benoit 1987, 1989, Benoit and Poussigue 1989). The method consists of determining the 
moments of the response function directly from the dynamical matrix 3 N  x 3 N .  where N 
is the system size: for instance the dielectric susceptibility of the system if we are studying 
infrared absorption, Raman scattering or the differential cross section if we are studying 
inelastic scattering of light or neutrons. The method has been used for the study of the 
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dynamics of quasi-crystals (Benoit et al 1990), polythiophene (Poussigue and Benoit 1990, 
Poussigue et ul 1991) and the Sierpinski gasket (Benoit et al 1992a). More recently, we 
have shown that, with some variations, this method could provide the total DOS with good 
accuracy and the displacement correlation functions of the system (Benoit et al 1992b). 
Thanks to its simple computing aspects, the spectral moments method has allowed us to 
work with very large clusters (up to IO6 atoms) in d dimensions (2 < d 4 6) @oyer et ul 
1991, 1992a, b). 

We have developed calculations of DOS, on a 1053 cubic lattice for different values of 
site (bond) occupation probability p pc. Two models are studied, the purely nearest- 
neighbour interactions model ( y  = O), hereafter referred to as the first model, and the 
second one with next-nearest-neighbour interactions ( y  # 0). 

2.1. First model (y  = 0) 

To test the accuracy of our algorithm, we have computed the DOS of the 1053 simple cubic 
lattice ( p  = 1: N = 1 157625). where interactions are represented by the scalar potential 
(a = 6 ) .  We have plotted in figure 1 the Dos C ( u )  versus square frequency U = wz. We 
note the excellent agreement between our results (circles) and the exact result obtained for 
an infinite simple cubic lattice (solid line). We have plotted in figure 3(e), the Ws g(w) 
versus w on a log-log scale. As one can expect, the results show in the low-frequency 
region a Debye law. 

’1 

Figure 1. The ws G(u) versus U for a 1053 simple 
cubic lanice (open circles). The solid line (-) 
indicates the exact solution for Le infinite system. 

Figure 2. The 00s on a log-log scale for 30 site 
percolating network size 105) at p = 0.33 (pc  = 
0.3112) for three values of S/n(y = 0): &/a = 0.0 
crosses; S/n = 0.5 -; S/or = 1.0 -. The 
pecolating cluster sire is 205312 sites. 

Let us begin by the site percolation. In figure 2, we have plotted the DOS g(o) versus w 
for three values of the ratio S/a at p = 0.33 near to the percolation threshold pc = 0.31 12  
for S = 0 (the purely central force model), the system has a finite fraction of zero frequency 
modes which decreases as p increases. The rigidity of the system vanishes at p close 
to pc. As 6/a increases the rigidity of the system increases, and high-frequency modes 
appear to the detriment of lower-frequency one. When a = 6 (scalar model), the system is 
macroscopically rigid. In this later case, we have computed the DOS for several values of 
the occupation probability p (figure 3). 



1944 A Rahmani et a1 

i I i a )  e LSiO) I - *  . /  

Figure 3. The scalar model ws ~ ( o )  on a log-log scale for 3D site percolating clusler at 
different values of p(pc  = 0,3112). formed on a 105’ cubic lanice: the straight lines give the 
slop of the WE and wc. (a) p = 0.33. (b) p = 0.4. (c) p = 0.5. (d) p = 0.6 and (e) p = 1. 
The percolating cluster sizes are respctively u)5312.413627.566305,6919!37 and 1 157625 
siles. 

Our results show, as expected, that near pc the DOS of the 3D site percolating cluster 
has a fracton behaviour, with the conjectured fracton dimension 2 = 4/3, figure 3(a) 
( p  = 0.33; N = 205 312). Above pc (figure 3(b): p = 0.4 (N = 413 627); in (c): p = 0.5 
( N  = 566305); (d) : p = 0.6 ( N  = 691 997)). a crossover frequency oc is observed, given 
by the intersection of the straight iines, such that for o < U,, the LXX g(w)  is Debye-like, 
with, as argued in Feng (1985a): 

g(w) ~r Ado’ (2) 

where 

Ad = [ C , ( P ) ] - ~  ( 3 4  



Vibrational properties of random percolating network 7945 

and 

(3b) 

is the sound speed of the system; the exponent j3 describes how the strength P of the infinite 
network goes to zero at the percolation threshold, 

l r -BI l2  CdP) - IP - Pcl 

p - ( P  - P c P  

while for w =- w,, the DOS is fracton-like, with 

g(0) 5 wd‘P’-’ (4) 

where &p), deduced from the effective slope of the log-log plot of the DOS fracton region, 
can be understood as an effective spectral dimension of the system. For pc < p c I ,  we 
note that d ( p )  depends on p ( g  < J(p )  c 3). for p relatively larger than p.. as it has been 
noted in the case of U) site percolating clusters (Royer et al 1992a). 

With 

d = 2D/(2 + (t  - f l ) / u )  (6) 

where D = d - B / u  is the fractal dimension of the system. 
No steepness or hump of the Dos exists in the crossover region in the vicinity of 0,. 

When p = 1 (figure 3(e)). at lower frequencies, two peaks appear at 0.01 1 and 0.023 which 
correspond to the first (0.0106) and the second (0.0212) minimal frequencies of a cubic 
lattice of size 105’ (Landau and Lifshitz 1967). followed by a Debye law (g(w) - 0’) 
in agreement with previous investigations (Yakubo and Yakayama 1987, 1989). At higher 
frequencies, the peak at w = which appears in all the spectra, is related to vibrations 
of a single site connected by a single bond to a relatively rigid block (Grest and Webman 
1984). Other peaks related to the local structure element of the cluster can be identified in 
figure 4(a), (b) and (c) where we have plotted the Dos G(u) versus U = d. 

In figure 5(a), the crossover frequency w, is plotted versus the occupation probability 
p. As p approaches pc. wc approaches zero with the scaling w, - Ip - pCl 1.52M.03 is 
in agreement with the predictions of the scaling theory, 

For a 3D site-percolating cluster U = 0.83 (Stauffer 1979) and D = 2.5, with d = 0. 
u D / d  = 1.56 which is in the order of the value of our study. In 2D, Royer et a1 (1992a) 
showed a discrepancy between their calculation of u D / d  and theoretical probes; we think 
that ZD is a singular case as we will see below. Another feature of our calculations is 
conceming the conductivity exponent t .  In figure 5(b), we have plotted the coefficient Ad 
of the Debye term in Dos, g(o) Y Ado2, the slope is -2.42 * 0.02. Using equations (3a) 
and (3b), Ad obeys the scaling law, 

(8) Ad - I p  - pcl-3(f-6)/Z 
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Figure 4. Plot of the scalar model ws C ( u )  versus U = w’ at different values of p for a 105’ 
cubic lanice: (a) p = 0.33. (b) p = 0.4. (c) p = 0.5, (d) p = 0.6 and (e) p = 1. 

with p = 0.4 (Gaunt and Sykes 1983) and f = 2.0 (Kantor and Webman 1984). For 3D 
site percolating cluster, the exponent -3(f - @)/2 = -2.4 which is close to our estimated 
value. 

The case of bond percolation is more complex. In figure 6, we have plotted for several 
values of p > p c ,  where pc  = 0.2489, the Dos g(w) versus w on a log-log scale for a 
3D bond-percolating network of size 105? (a) p = 0.265 (N  = 498757); @) p = 0.3 
(N = 803796); ( c )  p = 0.4 (N = 10672OI); (d) p = 0.5 (N = 1 133 152) and (e) p = I 
(N = 1 157 625). In figure 6(a) at low frequencies, the fracton regime is govemed by an 
effective spectral dimension d = 0.35 i 0.02. As p approaches 1 (figure 6(b), (c) and 
(d)), like in the site percolation, three different regions are observed one can recognize 
the phonons (i.e. ~ ( w )  - w2), only when p is sufficiently larger than pc .  Intermediate 
regions correspond to fracton modes. The same results are noted in ZD bond-percolating 
clusters as illustrated in figure 7, w h e e  clusters are formed on a 1 loOz square lattice: (a) 
p = 0.52 (N = 954528); (b) p = 0.6 (N = 1147654); (c) p = 0.8 (N = 1207768) 
and (d) p = 1 ( N  = 1210000). At p = 0.52 (figure 7(a)) near pc  = 0.5, the effective 
spectral dimension is d = 0.37 f 0.02. The discrepancy between our estimated values and 
the conjecturing value of 2 = $ of site percolating cluster is due to the difference between 
the mean connectivity in these systems and will be discussed later. 

As discussed by Alexander (1984), the Born-Huang scalar potential is not explicitly 
invariant under rigid rotation (6 # 0). Assuming this invariance, the equilibrium condition 
dictates that the non-central force constant must vanish (6 = 0). In other words, the corrected 
Born model requires purely nearest-neighbour interactions to be central only (Keating 1966). 
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Figure 5. (a) The crossover frequency cut; (b) the mefficient Ad of the Debye term of the scalar 
model Dos, versus Ip - pCl on a log-log scale. 

By introducing the next-nearest-neighbour interactions, Kaplan (1961) showed in the case 
of 3D cubic lattices, that the equilibrium condition does not restrict the choice of the force 
constants. 

2.2. Next-nearest-neighbour model ( y  # 0) 

A qualitatively correct way to include bond-bending forces is to extend the interactions to 
next-nearest-neighbours in the Bom Hamiltonian (equation 1 with y # 0). This model 
is rotationally invariant, and has an elastic rigidity threshold equal to the geometrical 
connectivity threshold. 

Two cases are studied here: the first central and the next non-central nearest-neighbour 
potential (8 = 0 and y # 0); and the noncentral first and second nearest-neighbour potential 
(a = 6 # 0) and y # 0). We will present the results obtained for the case of the site 
percolation problem. The same behaviour is noted in bond percolation. 

In figure 8, we have represented on a log-log scale the ws g(w) versus m in the case 
of the first central and second nearest-neighbour model of the 3D site percolating network 
(1053) at p = 0.33, where the percolating cluster size is 205312 sites. One can show 
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r 5  ! ; ( a )  
Log( m ) 

Figure 6. The scalar model ws 8(0)  On a log-log scale for a 3D bond percolating cluster at 
different values of p (p, = 0.2489). formed 011 a lM3 cubic lattice: The straight lines give the 
slope of lhe ws. (a) p = 0.265, (b) p = 0.3, (c) p = 0.4. (d) p = 0.5 and (e) p = I. The 
percolating cluster sizes are respectively 498757. 803796. 1061201. 1133 152 and 1157625 
siles. 

0 - 2  . I  

that the more important the ratio yla! the more rigid the system is, as expected, and zero 
frequency modes are reduced. For y << a!, the system is fairly soft and the DOS of lower 
frequencies is important (y/a = 0.01). In this case, we note the presence of two different 
regions. As yla increases. the high frequency region decreases, while two new fracton 
conhibutions appear in the low-frequency region. The slopes are dependent on y / a .  It is 
dificult to hold the effective spectral dimensions, but one can observe (for example with 
y/a = 0.7) a characteristic behaviour: particle modes at high frequency and a fracton region, 
for approximately log o > -1.5, exhibits two different contributions with a crussover near 
log o 5 -1.12; at very low frequencies (for log o < -1.5). a phonon regime is expected, 
(not taken into account by our model). It is, qualitatively, in agreement with previous 
works (Webman and Grest 1985, Feng 1985a). in the case of the bond-bending model, 
where the fracton regime appears to be a combination of two contributions associated with 
bond-stretching motions and bond-bending ones. The latter is less pronounced in our model 
than in the bond-bending one. 
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Figure 7. The scalar model ws g(w) on a log-log scale for a U) bond percolating cluster at 
lhree values of p(pc = 0.5). formed on a i1C02 square lattice: (a) p = 052. (b) p = 0.6, 
(c) p = 0.8 and (d) p = I. The percolating cluster sires are respectively 954528, 1147654. 
1207678 and I210000 sites. 

Finally, we plot in figure 9 the Dos g(o) obtained by the first and second nearest- 
neighbour model of the 3D site percolating network at p = 0.4 ( N  = 413627) for three 
values of the ratio y /a ,  versus o on a log-log scale. This value of p is chosen due to our 
aim of studying the o, evolution. The main feature of this model is that, as in the scalar 
model, the three regimes are conserved phonons at low frequencies, particle modes at high 
frequencies and fractons in the intermediate region. As the ratio increases, we observe, 
on one hand an increasing of the crossover frequency a,, and on the other hand that the 
upper fracton region shows a deviation of the slope from the scalar one ( y / a  = 0). In 
order to illustrate the variation of o, with y / a ,  we have plotted in figure lO(a) on a log-log 
scale o,(y/a) versus y / u ,  the slope is 0.13 f 0.03. In figure 10(b) we have plotted the 
coefficient Ad of the Debye term versus y / a ,  and the slope is -0.41 & 0.02. By analogy 
with the bond-bending model we can assume that the sound speed C,(p) of our system 
obeys a relation (36). 

(f-W C A P )  - IP -Pel 

where f is the elastic modulus exponent of our present model. At the lower fracton region, 
the effective spectral dimension is virtually insensitive to the y / a  variation. Thus, in this 
region one can reproduce the same relations as (2, 3a and 36), so that the coefficient Ad is 
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.2.0 -1.5 -1.0 .0.5 Log( ) 0.5 

Figure 8. The DOS on a log-log d e  for a ID sik percolating network size 10S3 at p = 0.33, for 
four values of y/a: 6 = 0 (fint central and second non-central neighbaudng model): y / a  = 0.01 
crosses; YILT = 0.10 i y/a = 0.70 open squares; yla = 5.00 -. The penolating cluster 
size is 205 312 siws. 

given by (8). 

Ad .-., Ip - pcl-"'l-P)/z (9) 

with w, - (y/01)0.13*0.03 and Ad -  CY)-^^^'*^^^', one can show that the exponent f is 
given by, 

if we suppose that 2 = $ in (10) then f = 3.7 & 1.0 which is in the range of the elastic 
modulus of the bond-bending and granular models (Feng 1985a, b). 

3. Discussion and conclusion 

In this paper we have studied the dynamical properties of very large ZD and 3D site- and bond- 
percolating clusters, with different types of interacting potentials. These results complete the 
results concerning the 2D site percolating networks published in Royer et a1 1991, 1992% b. 
The discussion will take into account the results of these preceding papers. 

First, we confirm that for the site- and bond-percolating clusters the effective spectral 
dimension for the 20 system does not verify the Alexander and Orbach conjecture (d = i). 
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Log( (II ) 

Figure 9. The ws on a log-log scale for a 1D site percolating network size 1053 aI p = 0.4, 
for three values of y / a  = y / 8  (first and second non-cenual neighbouring model): y/or = 0.10 
open squares: y/a  = 0.50 -: y / c  = 5.00 -, The percolating cluster size is 413621 
s i t s  

Further, this exponent is dependent on the choice of probability law in the case of the ZD 
percolating network. Indeed, for p near pc. the spectral dimension is 1.302 for the site 
percolating network (Royer et al 1992a). whereas d takes the value 1.37 i 0.02 for the 
bond one. These values are different from the $. However, for the 3D networks, we note 
that d, for both types of system, converges to the conjectured value, although the bond case 
presents a larger effective spectral dimension value (d = 0.35). 

As d increases from 3 to 6 we have found that for site percolating clusters (Royer et QI 
1991, 1992b) d is always close to $ and that the total DOSS are identical, at the percolating 
threshold, whatever the Euclidean dimension (d 2 3). This effect means that the moments 
of the Dos are identical for these systems; but the moments of order n are given by the 
trace of the dynamical matrix at power n: 

fin = Tr(D"). 

The similarity of the trace of the matrix at the power n ,  regardless of the Euclidean dimension 
is shongly related to the connectivity of the system and to the probability of finding a given 
number of neighbours for a site of the system. In fact, it is strongly connected to the 
probability of finding a particle on a given site at time t ,  this particle being on this site at 
time t = 0 (Rammal and Toulouse 1983). At low frequency, i.e. for long time t .  the high 
Euclidean dimension systems will present the same behaviour, due to the large possibilities 
to travel through the lattice, while in 2D systems it should be m m  or less problematic, 
depending on the type (site or bond) of the percolating cluster. 

The second point concems the behaviour of the WS as p increases from pc to 1. Let 
us recall that we do not use on our models any boundary condition. In fact a periodic 
model of cubic percolating clusters, would present a low-frequency Debye regime under 
a crossover frequency w,. In real physical percolating cluster systems, even near pc,  we 
will have three regimes: phonon, fracton, and particle. We note however that with the 
site percolating cluster a phonon regime appears rapidly indicating that the system quickly 
becomes rigid. Such an effect is absent in the bond percolation (figure 6). where the phonon 
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0.8 i 
- 1 . 2  -0.8 -0 .4  -0.0 

Log(ym 

Figure IO. (a) The crossover frequency U<; @) The meilicient Ad of the Debye term of the 
fin1 and second non-cenual neighbouring model ws versus ule ratio ylu = y / S  on a log-log 
d e ,  at p = 0.4 for a JD site percolating network of size 105'. 

regime appears only for p close to I. These results are vely interesting as they show that, 
for the site percolating networks, a phonon regime is present even for p = 0.4, where the 
system seems to be fractal. In figure 11, we have reported the log-log plot of N versus I?, 
(the radius of gyration). We note that the fractal dimensionality does not change dramatically 
when p goes from 0.33 to 0.4 (D = 2.5 and D = 2.6 respectively), and experimentally the 
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0.4 percolating network will appear as a good fractal system. However the slope of the DOS 
jumps from 0.33 to 0.49. The conclusion is that we must be very careful when deducing a 
spectral dimension from experiments. 

The third point concems the comparison of our calculation with the ws obained for 
silica aerogel (Vacher et a1 1990). The authors have found four contributions to WS: the 
phonon mode region at very low frequency, followed by two distinct regions in the fracton 
mode regime, and particle modes at high frequency. The authors interpreted their results on 
the existence of two different scaling behaviours. Based on the work of Feng (1985a). they 
supposed that a crossover frequency m: exists in the fracton regime, such that, when the 
frequency w > U,, the fracton properties of the system are governed by the bond-stretching 
motion, which scales the same way as in the scalar model with & = 1.9-2.2. Whereas, 
when o c CO;, the bond-bending motions are dominant with an effective spectral dimension 
& = 0.9-1.3. This can be seen in figure 8 where four frequency regimes can be found a 
Debye regime (present in the real system), a fracton regime with two kinds of behaviour 
(for y / a  = 0.7 for example) and a particle regime. However we note that we have also 
found two fracton regimes for the bond percolating network with p = 0.3 which is close 
to pc (0.2488). 

Figurell. Resullsforthenumberofpanicles N 
in a site percolating cluster (]OS3) at p = 0.33 
(solid line) and 81 p = 0.4 (bald line) as a 
function of he radius of gyration R.. on a log- 
log scale. ' Log(R ") '' .O i 0 5  

So it seems as a general conclusion of this paper that it is difficult to interpret the 
experimental data obtained with only a simple model. The Doss are strongly dependent on 
the sbllctllre, and interacting potential. Therefore, it is necessary to build a model based on 
the physical reality, i.e. a model using a credible structure and interacting atomic potentials. 
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